"Tomorrow's Progress Today"

APAR INDUSTRIES LTD. (Unit: Uniflex Cables)

unicaB ${ }^{\text {® }}$

APAR INDUSTRIES LIMITED (Unit: Unifiex Cables)
 Oif. Veera Desai Road Andheri (M), Mumbai- 40005 Maharashtra, India.
(T) +01 $2226740001 / 2$

REGISTERED OFFICE:
APAR INDUSTRIES LTD.
301, Panorama Complex, R C Dutta Ro
Vadodara 390 007, Guiarat, India.

MANUFACTURED BY: APAR INDUSTRIES LTD. (Unit: Unifilex Cables)
Unit 1
Plot No. 158 - 163 G.I.D.C Umbergaon - 396171
Dist. Valsad, Guiarat - 396171
It Dist. Valsad, Gujarat - 396171
(T) $+012602562412,2563412$
(f): +91 260 2562950, 25622954

LIST OF BRANCH OFFICES
New Delhi
$301 / 306$ \& 307, BMC House N -01, Block Middle Circle
Connaucht Ciruus, New Delhi - 110 001
Telephone No: +91 $1123329490 / 41523320 / 32085575$

Chenna

Door Old No: 43, New No. 63,58 8rd Strex
Ashok Nagar, Chennai -600 083
Telephone No: +91 44 24892297/ 24891508

Hyderabac

907, 9th Floor, Babu Khan Estate
Basherbbagh, Hyderabad -500001
Telephone No: +91 4023243406 / 23298514

THE FUTURE OF WIRING IN INDIA

WIRES \& CABLES THAT WITHSTAND HIGH TEMPERATURES WIRES \& GABL FS WITHINGREASFD GURRENT GAPACITY

17
 i| 1 in
 137414inn minlumm

COMPANY PROFILE

APAR INDUSTRRIES LTD - founded by Late Shri Dharmsinh D Desai, in peerating in the diverse field of Electrical, Metallurgical and Chemical Engineering. Over the years, it has evolved to be a Rs 5500 Crore diversified Company, offering value added products and Services secialy Oil Products and Power Distribution \& Telecommunication Cables after merger of Unilex Cables Ltd with Apar Industries Lto Apar Industries is the 5 th largest manufacturerof Transformer Oils in the world. Apar is also amongst the largest producer and exporter
Conductors, exporting to over 65 countries in the world; having afu ange of ACSR and $A A A C$ upto 1200 kV and has recently introduced tate-oft he-artHigh Temperature Conductors.
Apar Industries Ltd (Unit: Unifiex Cables) has its plants at Umbergaon
and Khataliwada in South Gujarat (150 kms from Mumbai) for nd Khatalwada in South Gujarat (150 kms from Mumbai) for et up a state-of-the-art 1.5 MeV and 3.0 MeV Electron Beam Acceleratorsalong with suitable handling systems.

POWERCABLES

Cables. The Company has a state-ofthe-art manufa cturn specialt facity Cables. The Company has a state-ointine-art manuiacturing faciity
o manufacture Medium Voltage XLPE cables on a high precision CVV line from Royale Systems, USA. The Company manufactures Iso equipped to manufacture LT and MV Aerial Bunched Cables apto equppect to mand 33 kV, Instrumentation pairs and Triad Cables.
upto Control Cables, PVC Flexible cables for Industrial, Building and Pane wiring. The Company has also introcuced Medium Voltage Covered
Conductors and Ant PowerTheft cables and 105° C Irradiated Power Cables.
ELASTOMER CABLES
oneer status in manufacture of Elastomer Cables in India and has been supplying these types of cables since Cem to various clients like Railuays, Ship-Wiring Indusctry, steel and Cement Plants, Nuclear Plants, Windmills, Solar and Mining Sectors.
The plant is capable to process varioustypes of compounds like EPR EPDM, PCP, CSP, CPE, slilicon, EVA Halogen free and Fire Resistan on Toxic Compoonds. We offer cables with ATC, GI wire braid
SyntheticsorTextile Yarnand Gass Fibre. Ourrane includesTrailing Synthetics or Textile Yarn and C Class Fibre. Our range includes Trailing
Cables, Locomotive Cables, Ship Wiring Cables, wind Mills Cables Solar Cables, Welding Cables, Mining Cables, LLFH C Cables 8 Wires, Firie
Survival and Composite Cables having integrated Fibre Survival and Composite Cables having integाrated Fibre Optic corre.
optic fibrecables
We manufacture High Performance Data and Video Transmission
cables which includes 2 Fto $24 F$ UUnitubeand 2 Fto 432 FLosesetube

Asse anurace The cables are manufactured in various confiourations like
588 Unarme or multimode fibers. These cabbes are extensively deployed with Telecom Operators like BSNL/BBNL, Relinace infocom, Reliance Jio,
ACT and several mult service operators. Cables can be offered to any National or International Specifications.

ELECTRONBEAMIRRADIATION FACILITY State-of-the-art Electron Beam Accelerators (1.5 MeV and 3 MeV)
have been installed in Westem India Kathalwada located about 20 kms away from Vapi, Gujarat. We have a completer range of handling system for irradiation of various types of Electrical and Automotive
Cables $\&$ Wires PE sheets Polymeric Tubes and Pipes Heat Shivk Products, Gems and Diamonds, Medical product Sterlisation, reprocessing of PTFE scrap etc. The Electron Beam Cross Linked wires and cables offer superior performance in demanding
application and in extreme environments. Our high performance EBXL cables have been type approved by renowned organizations likeTUV, DQAN, DRDO, RDSO, Railways, ABS, NPCIL etc.

SPECIALITY CABLES

We oiter various types of Hybrid / Specialty Cables. We have a diverse experience todesign and offer specialized cables like Trailing
Cables with Power/Control/Shielded cores, CRD cables with integrated Multimode Optical Fibre Cables, Underwater subsea cables, Festoon Cables, 11 kV landline Mining cables for Stacker/Recllimer etc. We have to our credit the development of
cables like Heavy TOW Cables and Light TOW cables for subsea applications, Torpedo cables (Fibre Optic Cables for Naval applications), Festoon Fibre Optic Cables for Large cranes, Elastomeric Cables utpo 33 k Vfor Mining and Windmill applications, Aluminium Conductor Eastomer Cables, Electron Beam irradiated
Cables for Railway Locomotive and Ship Wiring, integrated Fibre Optic for ladel cranes for steet industry, Solar PV Cable for DC applications and Solar Cables with Rodent Resistance.

APAR ANUSHAKTI WIRES / MAHASHAKTI CABLES
Deve. wese in-cillye, Apar Anushaki wres and Manassharic cables,
are with specilly developed PVC Compounds of $105^{\circ} \mathrm{C}$ rating and XLPO compound respectively, enabling protection against Electric Shock/Short Circuit, High Oxygen and Temperature Index for fire
Retardancy. These wires \& cables can easily take long term overlod of over 40%. The insulation does not mealt when ing tentact with any hot object and is non softening, infusible, non dripping, high insulation resistance, self extinguishing and do not catch fire, better
ageing properties and longeroperting lif.

(9PAR

Three Core Flat Cables - size, dimensions and rating (for reference) as per IS 694/2010
Construction Drawing
\rightarrow OUTER SHEATH

Description	Apar Unicab	Apar Mahashakti E-Beam Cables
Conductor	99.97\% Plain annealed flexible copper (Class 5)	
Insulation	PVC Type A	xlpo
Outer sheath	PVC Type ST2	Special Elastomer
Temperature withstand capacity	$70^{\circ} \mathrm{C}$	$120^{\circ} \mathrm{C}$

Nominal Area of Conductor	Number/ Nominal Diameter of wire	Thickness of insulation (Nominal)	Nominal thickness of sheath\qquad	Approx Nominal		Conductor Resistance km @ $20^{\circ} \mathrm{C}$	Current carrying capacity 2 cables, single phase	
				Widh	Thickness		Apar Unicab	Apar Mahashakti E-Beam Cables
Sqmm	mm	mm	mm	mm	mm	Ohms	Amps	Amps
1.5	30/0.25	0.6	0.9	10.3	4.9	13.3	14	21
2.5	$50 / 0.25$	0.7	1.0	12.6	5.8	7.98	18	27
4	56/0.30	0.8	1.0	14.8	6.6	4.95	26	39
6	84/0.30	0.8	1.2	16.95	7.4	3.30	31	46
10	140/0.3	1.0	1.4	24.2	10.2	1.91	42	63
16	226/0.3	1.2	1.4	26.2	10.9	1.21	57	85
25	354/0.3	1.4	2.0	33.4	14.2	0.780	72	105
35	495/0.3	1.4	2.0	37.4	15.8	0.554	90	130
50	703/0.3	1.5	2.2	42.9	17.8	0.386	115	165

Note:
Technical data in case of Mahashakti shall be available on request

Three Core Round - XLPO Insulated and Double Sheathed Cable

Size, dimensions and rating (for reference)

Nominal Area of Conductor	Number/ Nominal Diameter of wire	Thickness of insulation (Nominal)	$\begin{array}{\|l\|} \hline \text { Thickness } \\ \text { of inner } \\ \text { sheath } \end{array}$	$\begin{array}{l}\text { Thickness } \\ \text { of outer } \\ \text { sheath }\end{array}$ Nominal	\qquad	Conductor (Max) per km @ $20^{\circ} \mathrm{C}$	Apar Unicab Apar Mahashakti E-Beam Cables Current carrying capacity 2 cables, single phase	
Sq mm	mm	mm	mm	mm	mm	Ohms	Amps	Amps
1.5	30/0.25	0.7	0.4	1.2	10.5	13.3	14	21
2.5	50/0.25	0.8	0.4	1.2	11.9	7.98	18	27
4	56/0.3	0.8	0.4	1.2	13.0	4.95	26	39
6	84/0.3	0.8	0.4	1.4	14.6	3.30	31	46
10	140/0.3	1.0	0.6	1.4	18.7	1.91	42	63
16	226/0.3	1.0	0.8	1.4	21.5	1.21	57	85
25	354/0.3	1.2	0.8	1.6	25.7	0.780	72	108
35	495/0.3	1.2	1.0	1.6	28.6	0.554	90	135

Note:
The number of strands and strand diameter shall be such that it meets the eon

General test requirements for Flame Retardant Cables

TEST	Description of Test requirement	Specification	Specified Values
Critical Oxygen Index	To determine the percentage of Oxygen required to support combustion of insulating material	$\begin{gathered} \text { ASTM- } \\ \text { D:2863 } \\ \text { IS: } 10810 \end{gathered}$ Part-55	≥ 29
Temperature Index	To determine the temperature at which normal 21\% Oxygen content in air that will support combustion of insulating material	$\begin{gathered} \text { ASTM- } \\ \text { D:2863 } \\ \text { IS: } 10810 \\ \text { Part-64 } \end{gathered}$	$\geq 250^{\circ} \mathrm{C}$
Smoke Density	To determine the (Light Transmission) visibility during fire of insulating material	$\begin{aligned} & \text { ASTM- } \\ & \text { D } 2843 \end{aligned}$	Light Transmission $\geq 60 \%$ (Avg) $\geq 60 \%$ (Avg)
Acid Gas Generation	To ascertain the HCL acid gas released by insulating material during fire	$\begin{gathered} \text { IEC } \\ 60754-1 \end{gathered}$	$\begin{gathered} \leq 20 \% \\ \text { (by weight) } \end{gathered}$
Circuit Integrity / Fire Survival Test	To determine the ability of cable to maintain the circuit in flame at $750^{\circ} \mathrm{C}$ for at least 3 hours $\left(950^{\circ} \mathrm{C}\right.$ for 3 hours as per BS: 6387)	$\begin{gathered} \text { IEC } \\ 60331-21 \end{gathered}$	Cable shall withstand $750^{\circ} \mathrm{C}$ flame temperature and maintains the circuit uninterruptedly. Also for $950^{\circ} \mathrm{C}$ as per CWZ can be offered

Comparison of key features of various category of fire safety cables

	Ordinary PVC	FR	EBXL-FR	FR-LSH	LSOH	FIRE SURVIVAL
Test	Specified Values					
Critical Oxygen Index	23\%	$\geq 29 \%$	$\geq 30 \%$	$\geq 29 \%$	$\geq 30 \%$	$\geq 30 \%$
Temperature Index	$160^{\circ} \mathrm{C}$	$\geq 250^{\circ} \mathrm{C}$	$\geq 250 \%$	$\geq 250^{\circ} \mathrm{C}$	$\geq 280^{\circ} \mathrm{C}$	$\geq 280^{\circ} \mathrm{C}$
Smoke Density	$\approx 85 \%$	~75\%	$\approx 70 \%$	< 60%	<20\%	<20\%
Acid Gas Generation	$\approx 50 \%$	$\approx 40 \%$	<20\%	<20\%	< 0.5 \%	<0.5\%
Fire Survival Test	NA	NA	NA	NA	NA	IEC 60331-21

Selection guide for Three Core Flat Cables for submersible applications

HP vs Current rating				12.5	15.5	17.5	20	25	30	35	40	45	50	55	60	65	70	75	
HP	5	7.5	10																80
Amp	7.5	11	14.9	18.9	22.5	25.2	28.4	35.6	42.3	50.4	58.1	62.1	67.5	73.8	81	87.3	93.6	100.8	108

Derating factors: Based on the various ambient temperatures, the current carrying capacities are to be multiplied by the factors given below

Ambient temperiature ${ }^{\circ}$ C	30	35	40	45	50
Rating Factor	1.09	1.04	1.00	0.95	0.77

E-BEAMTECHNOLOGY:

Radiation has been used in various fields such as nuclear physics, chemistry, medical and isotopes ever since X-Ray was first discovered by German engineer and physicist - Wilhelm Conrad Röntgen in 1895. After radiation, cross-linking phenomena was experimented on polyethylene in 1952. Presently over 1800 (estimated) electron accelerators based
processing units are in operation worldwide with 650 units in North America, 380 in Japan, 240 in China, 6 in India - of which Apar Industries hastwo such machines
As the name implies, Electron Beam is the flow of high energy electrons and the energy is obtained as kinetic energy when the electrons move in a high electric field. The radiation processing by Electron Beam is a Physical reaction caused in a material by an exposure to its irradiation. The E -Beam Irradiation is a process in which the polymer is exposed to an energetic, highly changed stream of electrons. Polymers are made of hydrocarbons
having C=C Cas strong bond and C-H as weak bond The princiraz effectof high velocity electrons is to break the existing weak hydrogen bonds \& create a free radical in the polymeric insulation materials. Similarly another electron penetrates and knocks off another H and creates another free radicals. These two free radicals react with each other and form a double bond which we call as cross-links between molecules. This cross linking significantly improves Thermal, Mechanical and Chemical properties of the polymer i.e. insulation \& sheathing materials. Electron Beam Irradiation (for cross linking) makes the polymer dimensionally
more stable under the influence of heat, resistant to chemicals, solvents and high temperatures, tough and more abrasion resistant. The conventional methods of cross-linking based on thermally induced "chemical cross-linking", have drawbacks that it is carried out at high temperature which does affect the life of polymers due to degradation caused by high temperature exposure whereas the electron Beam crosslinking is carried out at room temperature. With the electron-beam accelerators, the insulation materials can be cross-linked within few seconss.
cross-linking is achieved The termirradiation is simply the act of applying radiation (or radiant energy) to some material.

The Electron Beam Cross Linked (EBXL) wires and cables offer superior performance in demanding application and in extreme environments. Some of the improved Mechanical Properties are:

- Improved Mechanical Properties

Tensile strength increases
Thermal Resistance
Flame Propagation Resistance
Abrasion Resistance
Stress Cracking Resistance
Deformation Resistance

Abreast to the technologies worldwide, Apar's "Anushakti and Mahashakti" cables \& wires are manufactured with EB technology and exhibit properties such as..

Single Core, Unsheathed Flexible Cables - size, dimensions and rating (for reference) as per IS 694/2010

$\begin{aligned} & \text { Nominal } \\ & \text { Area of } \\ & \text { Conductor } \end{aligned}$	Number/ Nominal Diameter of wir	Thickness of insulation (Nominal)	$\begin{array}{\|l\|} \hline \text { Approx } \\ \text { Overall } \\ \text { Diameter } \end{array}$	$\begin{aligned} & \text { Conductor } \\ & \text { Resistance } \\ & \text { (Max) per } \\ & \mathrm{km} @ 20^{\circ} \mathrm{C} \end{aligned}$	Current carrying capacity			
					Apar Unicab		Apar Anushakt E-Beam Cables	
					In conduit / trunking	Unenclosedclipped directly to surface or on cable tray	In conduit / trunking	Unenclosedclipped directly to surface or on cable tray
Samm	mm	mm	mm	Ohms	Amps	Amps	Amps	Amps
0.75	24/0.20	0.6	2.20	26.00	6	7	9	14
1	32/0.20	0.6	2.40	19.50	11	12	16	24
1.5	30/0.25	0.7	2.85	13.30	13	16	20	32
2.5	50/0.25	0.8	3.50	7.98	18	22	27	44
4	56/0.30	0.8	4.00	4.95	24	29	36	58
6	84/0.30	0.8	4.50	3.30	31	37	47	74
					Max current rating in Amperes			
10	80/0.4	1.0	6.30	1.91		46		83
16	126/0.4	1.0	7.25	1.21		62		105
25	196/0.4	1.2	8.80	0.780		80		128
35	276/0.4	1.2	10.35	0.554		102		143
50	396/0.4	1.4	12.25	0.386		138		194
70	360/0.5	1.4	13.90	0.272		214		300
95	475/0.5	1.6	15.90	0.206		260		364
120	608/0.5	1.6	17.80	0.161		305		427
150	750/0.5	1.8	19.80	0.129		355		497
185	925/0.5	2.0	22.00	0.106		415		581
240	1221/0.5	2.2	26.00	0.0801		500		700
Note: 1. The number of strands and strand diameter shall be such					Description	Apar Unical	Apar Anushakti E-Beam Cables	
$\begin{aligned} & \text { that } \\ & \text { 2. Avai } \\ & \text { requ } \end{aligned}$	vailable in packing lengths of $90 \mathrm{~m} / 180 \mathrm{~m}$ or as per				Conductor Insulation	99.97\% Plain a FR PVC	annealed fiexibe EB	eopper (Class 5)
3. Av	vilable with FR /	FR - LSH / Zero halogen cables / RoHS			Temperature withstand	e $\quad 70^{\circ} \mathrm{C}$		$105^{\circ} \mathrm{C}$

Multiple Core Round Flexible Cables - size, dimensions and rating (for reference)

Nominal	Number/ Nominal	Thickness of			kness		$\text { prox } \mathrm{pve}$		Conductor Resistance	Current ca	arrying capacity , single phase
uct	of wire of wire	(Nominal)	2 -core	3 -core	4 -core	2-core	3-core	4 -core	km @ $20^{\circ} \mathrm{C}$	Apar Unicab	Apar Mahashakti E-Beam Cables
Sq mm	Ohms	Amps	Amps								
0.75	24/0.20	0.6	0.9	0.9	0.9	6.7	7.2	7.9	26.00	7	10
1	32/0.20	0.6	0.9	0.9	0.9	7.0	7.5	8.1	19.50	12	17
1.5	30/0.25	0.6	0.9	0.9	1.0	7.6	8.1	8.9	13.30	15	21
2.5	50/0.25	0.7	1.0	1.0	1.0	9.1	9.6	10.5	7.98	20	28
4	56/0.30	0.8	1.0	1.0	1.0	10.5	11.3	12.4	4.95	27	38
6	84/0.30	0.8	1.1	1.2	1.2	11.5	12.5	14.0	3.30	31	43
10	80/0.4	1.0	1.3	1.4	1.4	16.5	17.5	19.5	1.91	39	55
16	126/0.4	1.0	1.4	1.4	1.4	18.5	20.0	22.0	1.21	53	74
Note: 1. The above tables are as per IS $694 / 2010$ for Unicab Cables						Description			Apar Unicab		Apar Mahashakt
						Conductor			99.97\% Plain annealed fixibile copper (Class 5)		
2. The number of strands and strand diameter shall be such that						nsul			PVC		XLPO
it meets the conductor resistance as per relevant 15 .						Outer sheath			FR PVC		Special Elastomer
3. Available in packing lengths of 100 m or as per requirement 4. Available with FR / FR-LSH / Zero halogen cables / RoHS						Temperature withstand capacity					$120^{\circ} \mathrm{C}$

FIRE SURVIVAL / FIRE RESISTANCE CABLES

Apar manufactures cables (brand: Unicab) that enhance SAFETY standards. Such cables survive/operate for a particular period in emergencies / fire hazards where faster evacuation and minimal frefighting efforts, besides maintaining emergency lighting and fire protection circuits is of prime importance. Fire Survival Cables (FS) or Fire Resistance Cables are designed to continue to operate and withstand temperature upto $950^{\circ} \mathrm{C}$ for 3 hours, without electrical breakdown at rated voltage. These FS cables with LSOH (Low Smoke Zero Halogen) insulation that emits minimal smoke and limits acid gas generation, which is a hazardous and toxic. They are also known as circuit integrity cables, since these are used in circuits that must be able to maintain their integrity during a fire.
Apar manufactures these cables with LSOH (Low Smoke Zero Halogen) insulation that emits minimal smoke and limits acid gas generation that helps faster evacuation and firefighting efforts, besides maintaining emergency lighting and fire protection circuitry. Apar possess the coveted RDSO E14/40 approval for use of its fire survival cables for Metro coach wiring.

The application...

Fire alarm system
Emergency lighting systems
Fire lifts
dranments hhat need safe switching of
Ideally installed in...
Industries / Factories
High-rise residentia
High-rise residential towers
Hotels / Malls / Theaters / Hospitals
Railway stations / Metro rail / Airports
Standards to which FS cables are manuactured
FS cables are manufactured...
IEC 60331-21
B5:6387 including the CWZ condition

